
A comparative study of semantic
search model performance on a

corpus of Legal Documents

Master Thesis

by
Adrien O’HANA

Supervisors:
Dr. Zachary SCHILLACI
Melvin KIANMANESH RAD

EPFL Supervisor:
Dr. Jean-Cédric CHAPPELIER

2022-2023

Contents

Contents 1

1 Introduction 5
1.1 Motivations . 5
1.2 Objectives . 5
1.3 Outline . 6
1.4 Term clarification . 6

2 Background 7
2.1 Information Retrieval . 7
2.2 Semantic Search . 7
2.3 Transformers . 7

2.3.1 Attention Mechanism . 8
2.3.2 Self-Attention . 9
2.3.3 Attention weights . 10
2.3.4 Pre-Training and Fine-Tuning . 11
2.3.5 Model Variants . 12

2.4 Transformers for Semantic Search . 13
2.4.1 Early Approaches . 13
2.4.2 Bi-Encoders . 14
2.4.3 Loss Functions . 15
2.4.4 Cross-Encoder Re-ranking . 17
2.4.5 Domain Adaptation . 17

2.5 Lexical Search . 19
2.5.1 Early Approaches . 19
2.5.2 BM25 Okapi . 20

2.6 Other Approaches . 21

3 Methodology 22
3.1 Objectives and Tasks . 22
3.2 Dataset Creation . 23

3.2.1 Legal Corpus . 23
3.2.2 Query Selection . 24
3.2.3 Fine-Tuning & Evaluation Requirements 25
3.2.4 Retrieval Span and Context . 26

3.3 IR Evaluation Metrics . 26
3.3.1 nDCG@K . 27
3.3.2 mAP@k . 27
3.3.3 MRR . 28
3.3.4 mAR@k . 28

3.4 Rater Agreement Metrics . 29
3.4.1 Spearman’s rho . 29
3.4.2 Kendall’s tau . 29

3.5 Annotation Campaign . 29
3.5.1 Guidelines . 30
3.5.2 Annotation Files . 30

1

3.5.3 Three Tier Approach . 31
3.5.4 Resulting Data . 33

4 Results 34
4.1 Inter-Annotator Agreement . 34
4.2 Domain Adaptation . 35

4.2.1 GPL . 35
4.2.2 AugSBERT . 36

4.3 Comparative Analysis . 37
4.3.1 Cross-Encoder Re-Ranking . 37
4.3.2 Sensitivity to k . 38
4.3.3 Binary Relevancy Results . 39
4.3.4 Discussion . 41

5 Conclusion and Perspectives 43
5.1 Key takeaways . 43
5.2 Drawbacks and Limitations . 43
5.3 Future work . 44

References 45

A Queries 50

B BERTopic 52

C Inter-Annotator Agreement 53

2

Acknowledgements
I would like to express my sincere gratitude to my supervisor, Zachary, for his guidance

and support throughout this research project. Zachary’s knowledge in the field were
critical in defining the direction of the research and in providing expert advice on technical
issues.

I would also like to thank my teacher, Jean-Cédric, for his continuous support and
guidance throughout the thesis. Jean-Cédric’s input was invaluable in refining the
direction of the research, and his regular feedback ensured that the project stayed on
track.

I wish to acknowledge Melvin for his oversight and guidance especially in the early
stages of the project. His motivation and encouragement throughout the research were
highly valued.

Finally, I would like to thank Mauro and Prisca for funding this project. Their regular
contributions insured the relevancy of the project and were critical in the successful
completion of this thesis.

I would also like to extend my thanks to my colleagues, friends, and family for their
support throughout the project.

3

Abstract
The proliferation of digital information has transformed the way we access and collect

data. While the internet provides a wealth of information on every topic, retrieving
relevant information from a large corpus of documents remains a challenging task,
especially in specialized domains like law. The complexity and technical nature of legal
documents, along with the sheer volume of information, make it difficult to search and
locate relevant information using traditional keyword-matching methods.

To address this challenge, semantic search models offer a promising solution. These
models go beyond simple keyword matching by considering the overall meaning of a search
query and the contextual meaning of words in a searchable data space. They help to bridge
the lexical gap between search queries and relevant results, providing more accurate and
comprehensive results. Nonetheless, semantic search in specialized domains such as law
remains challenging as the semantics used in such domains are rather specific and not the
usual more general semantics.

This study aims to evaluate the effectiveness of semantic search models on a corpus
of domain-specific documents and determine the best approach for retrieving relevant
information on a corpus of legal documents. We explain how to construct an appropriate
dataset to fit our domain-specific needs and use it to compare multiple approaches
of semantic search by interpreting the appropriate information retrieval evaluation
measures.

4

1 Introduction

1.1 Motivations
Semantic search is a way of performing information retrieval that can respond

accurately to the true meaning of a user’s search query by learning from the relationship
between the input words and recognising a user’s intent in order to find the appropriate
search answer. As a result of the emergence of large-language models (LLMs) derived
from the transformer architecture [1], there is a novel approach to semantic search: neural
search.

While neural search architectures leveraging these LLMs have already been proposed,
such as the sentence-transformer models [2], fine-tuning these on a specific task and
domain, such as retrieving relevant passages from a corpus of legal documents, requires
costly labeled data that is seldom available. A wide range of pre-trained models are
accessible and can be useful in many cases; however, these models have been reported
to often perform poorly in zero-shot settings [3], even worse than lexical search in some
cases [4]. To the best of our knowledge, their capabilities on a homogeneous real-world
use case remain undocumented.

1.2 Objectives
In this study, we are interested in discovering which techniques should be used when

searching in legal documents. The results of this research will provide valuable insights
into the application of semantic search models on official documents from the legal field
and will also contribute to a deeper understanding of the potential and limitations of
such models in other specialized domains, helping to pave the way for more effective
information access and retrieval in specialized fields.

We will address the following questions:

• Which techniques can be used to encode text into a semantically meaningful data
space for searching?

• How should we select a set of queries that is relevant to legal experts?

• How should the relevancy of a query-passage pair be labeled?

• Which metrics can we use to evaluate the performance of semantic search models?

• Do semantic search models that have been fine-tuned on other domains generalize
well to our own, or is their performance poorer than a lexical approach?

• What are the existing techniques to perform domain adaptation of neural search
models? What are their associated requirements and are they worth implementing
on our domain?

5

1.3 Outline
In Chapter 2, we delve into the theoretical foundations of semantic search and sentence-

transformers, and introduce a lexical baseline to compare semantic search models to. That
chapter provides a comprehensive analysis of the relevant literature on sentence embedding
techniques.

Moving on to Chapter 3, we explain our approach to constructing datasets that
meet the diverse requirements for fine-tuning and evaluation. We motivate our choice of
evaluation metrics and model selection and detail the methodology used for our annotation
campaign. This chapter sheds light on the different challenges we encountered and the
strategies we employed to overcome them.

Chapter 4 presents the results of our comparative study, highlighting the strengths
and limitations of the different models we tested against our baseline. We provide a
detailed analysis of the results, discussing the factors that contributed to the success of
the top-performing models.

Finally, in Chapter 5, we reflect on the implications of our research and discuss the
potential limitations of our study. We provide recommendations for future research,
highlighting the areas where further investigation is required. By the end of this study,
readers should have a clearer understanding on how to construct a dataset for semantic
search evaluation and how to choose a suitable sentence-transformer model for their
semantic search task on a specialized domain.

1.4 Term clarification
In this section, we clarify some important terms that will be used throughout this

thesis.

• Unless specified otherwise, when we use the term query we are referring to a natural
language search query, which is a request for information expressed in everyday
language without the use of a structured language or syntax.

• In the context of this thesis, the term document is used as a cover term for a text
of any length that is part of a given collection.

• A sentence is a grammatical unit of one or more words.

• A passage is a section or excerpt of text of considerable length, that is constructed
with one or multiple sentences. It can be taken from a larger work or a collection
of works, and may focus on a specific topic or idea.

• A sentence embedding is a vector representation of a sentence.

We often use the terms ’document’, ’sentence’, and ’passage’ interchangeably, since
sentences and passages are both documents.

6

2 Background

2.1 Information Retrieval
Information Retrieval (IR) entails finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from within large
collections. Retrieving pertinent information from a large pool of information system
resources may either rely on full-text or content-based indexing. This can involve seeking
information within a document, looking for the document itself, interpreting database
content or identifying metadata that contains relevant information.

Evaluation in information retrieval is heavily reliant on the nature of the problem at
hand. Some evaluation metrics focus on the ordering of the first k proposed answers,
which should be from most to least relevant. Other common IR evaluation metrics are
the usual ones for classification: Precision, Recall and F1, which measure the quality of
the top k answers disregarding their order. Evaluation is discussed in detail in section 3.3.

In this study, we focus on the retrieval of textual data. We use the term document as
a cover term for text of any length in the given collection, and the query for the user input
can be of any length as well. Retrieval can be done with approaches including lexical [5],
sparse [6] [7], late-interaction [8] and dense [9] [10] [11], the latter being the most novel due
to recent breakthroughs in deep learning applied to natural language processing (NLP).

2.2 Semantic Search
Sparse, late-interaction and dense retrieval methods are usually associated to semantic

search. These methods focus on generating responses to a search query by understanding
the searcher’s intent, the context of the query and the relationship between words. Such
an approach can alleviate the ambiguous nature of search queries and can bridge the
lexical gap that keyword based methods are often unable to overcome without heavy text
preprocessing. Furthermore, identical search queries could be phrased in different ways.
Semantic search also considers the relationship between words, which can be crucial to
find relevant information.

Applications of semantic search include passage retrieval, duplicate question detection,
fact checking, entity retrieval and question answering (QA), which can also be performed
in multilingual settings. Today’s state-of the art solutions heavily rely on transformer
architectures which are detailed in section 2.3.

2.3 Transformers
Recent developments, especially Transformers [1], have provided solutions better than

ever before to most problems in the field of Natural Language Processing. This rather
novel architecture has given rise to multiple derived models with the ability to encode
semantic meaning, the most notable being BERT (Bidirectional Encoder Representations
from Transformers) [12] and GPT (Generative Pre-trained Transformer) [13]. In the
following paragraphs we explain the core concepts that were introduced by Devlin et
al. [1]: positional encoding, self-attention and multi-head attention.

7

2.3.1 Attention Mechanism

”Attention” was originally introduced to improve Neural Machine Translation
(NMT) [14]. In an encoder-decoder setting [1], attention is a mechanism that empowers
the decoder to decide which parts of the source sentence to pay attention to. In an encoder
or decoder only setting, the attention mechanism can also learn to extract meaningful
representations of text for varying downstream tasks such as classification, named entity
recognition, document similarity or semantic search.

The Transformer architecture was published at a time when LSTMs [15] and GRUs [16]
were the state-of-the art approaches to language modeling. By dispensing with the
aforementioned recurrence networks’ inherent sequential nature, transformers provided a
more efficient and parallelizable architecture which relies solely on attention mechanisms.

Figure 1: (picture from [1]) Encoder part of the Transformer Model architecture. N×
encoder units are stacked one after the other. The top output can be trained to learn
different objectives such as text classification, named entity recognition or sentence
embeddings (see section 2.3.4).

BERT uses the encoder depicted in Figure 1. A text input sequence is converted to
concatenated word-piece vectors1 and attention modifies each of these initial vectors by
multiplying them with context-dependent weights. This leads to a better representation
of each word in the input sequence by taking into account all of the surrounding words
for each word.

In order to help the encoder distinguish the position of word vectors in the input
sequence, positional encodings are first added to the input embeddings. These encodings
represent the order in a sequence. Just like the encoder in the original transformer
paper [1], we note that by design BERT’s input is limited to 512 word-piece tokens,
which is an important limitation of this model (we can not encode texts that are too long,
or have to find a workaround - see section 3.2.4).

1Most transformers like BERT represent spans of text as tensors of word-piece vectors which also
gives the model the ability to represent words that are not part of its vocabulary by combining multiple
word-piece vectors. Word-piece vectors will be called word vectors from now on.

8

2.3.2 Self-Attention

In section 2.3.1 we introduced the concept of attention and briefly described it in
the context of a transformer encoder such as BERT [12]. Figure 2 depicts this process
of improving word vector representations in a sequence and introduces the concept of
Queries (Q), Keys (K) and Values (V). The initial word vectors are multiplied by three
different learned weights to form Q, K, and V, which are the coefficients of three different
linear layers, and which result in three new word vectors for each input word. Q, K
and V are then combined together with a ”Scaled Dot-Product Attention” to get new
context-aware word vectors.

Figure 2: Single Attention head. Queries (Q), Keys (K) and Values (V) are the input
word vectors combined together with a learned linear transformation to get better word
representations that depend on the rest of the sequence.

As the names suggest, we can make an analogy between the attention mechanism and
a retrieval system. We map a query Q with a set of key-value pairs K,V. Actually,
the result of the attention function is obtained by multiplying a set of queries Q,
which are representations of one of the input sequence words, with K, a different set
of representations of each of the input sequence words, from which we select the (soft)
maximum (Q,K) pair. This maximum pair points to the value V, which is yet another
representation of each input word where the mechanism indicates to pay attention. If
we add a scaling operation to the argument of the softmax we are using the scaled
dot-product attention depicted in Figure 3.

9

Figure 3: (picture from [1]) Scaled Dot-Product Attention. Q, K and V are the input
sequence word vectors multiplied by three different weight matrices. Masking is optional2.

”The input consists of queries and keys of dimension dk, and values of dimension dv.
We compute the dot products of the query with all keys, divide each by

√
dk, and apply a

softmax function to obtain the weights on the values. In practice, we compute the attention
function on a set of queries simultaneously, packed together into a matrix Q. The keys
and values are also packed together into matrices K and V” [1]

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

We talk about ”self-attention” because we are relating different positions of the input
sequence in order to compute a representation of that same sequence. dk is the size of the
word piece vectors, and in the context of self-attention it is the same as dv, since all the
keys, values and queries come from the same input sequence. The output of the attention
function is a tensor of context-aware vectors with the same shape as the original input.

2.3.3 Attention weights

So far we’ve detailed how the attention mechanism can compute better representations
of a sequence, but we haven’t addressed how we learn useful transformations for our input
words. In practice we would like each word to attend to not only one other word, but
multiple words in parallel. We use multiple attention heads (using Scaled Dot-Product
Attention) which are computed side-by-side over the input vectors, concatenated together
and combined with learned linear projections. This is called Multi-Head Attention.

2Masking is an optional mechanism used in various pre-training processes such as Masked Language
Modeling [12] which consists in hiding different parts of an input sequence and learning to predict the
missing words.

10

Figure 4: (picture from [1]) Multi-Head Attention.

”Multi-head attention allows the model to jointly attend to information from different
representation subspaces at different positions.”

In the case of self-attention, Q, K and V are tensors of size (N , dmodel), N being the
number of inputs and dmodel being the length of their associated token vectors.

Multi-Head Attention:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

with

headi = Attention(QWi
Q, KWi

K , V Wi
V)

where Wi
Q ∈ Rdmodel×dk ,Wi

K ∈ Rdmodel×dk ,Wi
V ∈ Rdmodel×dv are the learned weights of the

queries’, keys’ and values’ linear projections and WO ∈ Rhdv×dmodel the learned weights
that combine the multiple attention heads to get the final representation. dk and dv are
the output dimensions of the linear projections and are both equal. h is the number of
attention heads.

The output of the multi-head self-attention goes into a feed-forward network (see
Figure 1). Depending on the training setup, the weights of this neural network can learn
to output multiple objectives. This layer introduces more non-linearity (using ReLU
activation) and contain most of the learned parameters, which are trained in two stages:
pre-training and fine-tuning (see section 2.3.4).

Combined with the self-attention and the feed-forward network are residual
connections and layer normalization that typically prevent vanishing gradients and
improve training. Multiple encoder blocks like this are stacked one after the other and
used to learn sequence representations in the form of tensors of contextual dependant
word vectors. The output of the encoder is a tensor of contextualized word vectors.

2.3.4 Pre-Training and Fine-Tuning

Transformers can be seen as general purpose learning units that can solve many tasks.
When used in language, these models are usually pre-trained on self-supervised tasks
such as Next Sentence Prediction and Masked Language Modelling (MLM). It allows the

11

model to learn linguistic aspects relevant to multiple target tasks by recognizing patterns
in large amounts of unstructured textual data. This unsupervised pre-training provides a
good task-agnostic initialization point from which to learn a more specific objective.

Using input transformations and little fine-tuning data, pre-trained large languages
models can adapt to different target tasks and domains. Figure 5 shows different input
transformations to use with a GPT model which allow to learn different tasks like
Classification, Entailment, Similarity or Multiple Choice3 .

Figure 5: (picture from [13]) GPT Input transformations for fine-tuning on target tasks.

In this project we mainly focus on the encoder of the transformer architecture. The
reason we don’t detail the decoder is that almost all of the models studied do not use the
decoder part of the architecture, which purpose is to generate text rather than encode it.
In our case we are more interested in using numerical representations of text that would
allow us to search efficiently through large collections. As we will see in section 2.4, there
is a dedicated category of transformer encoders for semantic search.

2.3.5 Model Variants

Since the introduction of LLMs, countless alternative architectures have been
developed, each building on the foundation laid by their predecessors. Some of the most
notable advances have been made in the pre-training stage, with impressive enhancements
introduced with models like RoBERTa [17], Electra [18], MPNet [19] and the latest
iterations of GPT [20]. There are also exciting alternatives that focus on knowledge
distillation, resulting in streamlined and agile networks, such as DistilBERT [21] and
MiniLM [22]. With a plethora of diverse models to choose from, selecting the ideal tool
for a specific task has become even more conceivable.

3Contrary to BERT that uses only the encoder part of the Transformer Architecture, GPT uses only
the decoder which we haven’t described. For a detailed explanation, please refer to [1]

12

2.4 Transformers for Semantic Search
Semantic Search is usually performed by measuring the similarity of a given query

to all available textual documents, and selecting the highest scoring pairs, hoping to
obtain semantically pertinent piece of texts as a result. Sentence-transformers are fine-
tuned encoders that provide state-of-the-art performance for tasks ranging from question
answering to clustering [23] [24]. For semantic search, their performance can be very close
to the other methods on the BeIR benchmark [4].

SBERT 4 is the name of the framework giving access to pre-trained sentence embedding
models derived from a range of transformer architectures. By combining them with tools
from HuggingFace5 and Pytorch6, sentence embedding models can also be created from
scratch or fine-tuned with supervised and unsupervised approaches. We discuss these
approaches and their use-cases in the present section.

2.4.1 Early Approaches

Initially developed to solve sentence-pair regression tasks, sentence-transformers
provide two types of architectures: Cross-Encoders and Bi-Encoders.

2.4.1.1 Cross-Encoders

Cross-Encoder [25] is the name given to transformer models that have been fine-
tuned to predict the degree of relevancy between two inputs, such as the similarity of two
sentences, or the similarity of a query to a sentence that might answer it. These models can
compute a similarity score by performing self-attention over two input sentences that have
been concatenated and separated by a special token. This requires that both sentences
are fed into the network, which causes a massive computational overhead and renders
them inapplicable to problems such as clustering, semantic similarity, and semantic search
on large corpora. As we will see in section 2.4.4, this approach remains relevant when
applied to carefully selected subsets of data, because while not scalable on their own,
cross-encoders provide the best accuracy [2].

2.4.1.2 Mean-pooling and the [CLS] token

Until 2019 the most common solution to solve the scalability issue while leveraging
the power of large language models was to use these models’ pre-trained attention layers
to map spans of text to a vector space where semantically similar sentences are close to
each other7. This would be done by one of the following schemes:

• Averaging all contextual token vectors in the the final attention layer.

• Taking the maximum vector in the the final attention layer.

• Using only BERT’s ”[CLS]” token to represent the sequence, which is a dedicated
token inserted at the beginning of a sentence and contains sentence classification
information.

4https://www.sbert.net/
5https://huggingface.co/
6https://pytorch.org/
7Spans of text, passages and sentences can be used interchangeably for our use case.

13

https://www.sbert.net/
https://huggingface.co/
https://pytorch.org/
https://www.sbert.net/
https://huggingface.co/
https://pytorch.org/

All three approaches result in a fixed size vector that represents the input text’s
meaning.

As demonstrated for Sentence-BERT [2], simply deriving a fixed representation for
sentences from a pre-trained BERT model doesn’t provide good sentence embeddings, as
it often achieves worst results than much simpler models like GloVe [26] 8. To address this
limitation, Reimers et al. [2] introduced bi-encoders (also called sentence-transformers).
They provide semantically meaningful vector representations for spans of text derived
from a range of transformer architectures.

2.4.2 Bi-Encoders

There are several sentence-transformer architectures that use different objectives and
training data. In the first publication [2], the best performing models are fine-tuned in
two steps starting from pre-trained BERT/RoBERTa checkpoints. Those two steps are
depicted in Figure 6.

They first use a classification objective (Cross Entropy Loss) on the Natural Language
Inference (NLI) data (including the Stanford NLI dataset (SNLI)[27]) which is of the form
(sentence1, sentence2, class) and the classes are entailment, contradiction or neutral. The
best performing sub-method found is to perform mean pooling of the contextualized token
embeddings for each sentence and concatenate them in addition to the difference of the
means of the two sentences.

The second uses a regression objective (mean squared error) on the Semantic Textual
Similarity (STS) dataset [28] which is of the form (sentence1, sentence2, similarity score).
This time a regression is performed between the cosine similarity of two sentences and
their similarity score.

(a) SBERT architecture with classification
objective function, e.g., for fine-tuning on

SNLI dataset. The two BERT networks have
tied weights (siamese network structure).

(b) SBERT architecture at inference, for
example, to compute similarity scores. This
architecture is also used with the regression

objective function.

Figure 6: (pictures from [2]) SBERT Fine-Tuning and inference architectures.
8Word embedding models like GloVe, unlike transformer models, have no awareness of word ordering

and do not address polysemy issues.

14

”We always use cosine-similarity to compare the similarity between two sentence
embeddings” - or between a query and a passage in the case of semantic search. ”We
ran our experiments also with negative Manhatten and negative Euclidean distances as
similarity measures, but the results for all approaches remained roughly the same.” [2]

2.4.3 Loss Functions

After the first publication [2], several better performing architectures were proposed
on their website9. Modifications to the original architecture include the introduction of
new loss functions, which can determine how well the embedding model will perform on
a specific downstream task. The biggest factor in determining the type of loss to use is
the shape of the training data.

The original losses introduced were the Softmax Loss (classification objective) and
the Cosine Similarity Loss (regression objective) which have already been presented in
figure 6. Newer loss functions used in this study include the Multiple Negative Rankings
Loss [29] and the Margin MSE Loss [30].

Some vectors resulting from these methods are normalized, while others are not. It
depends if the similarity measure in the loss function is a cosine similarity or a dot-
product (dot-product models have a tendency to exhibit superior performance, albeit at
the expense of lower computational speed).

2.4.3.1 MSE and Cross-entropy

Let’s first define the commonly used Mean Squared Error (MSE) Loss and Cross-
Entropy Loss functions.

The MSE loss is commonly used as the objective function in linear regression. It is
defined as:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

where yi is the actual value of the target variable, ŷi is the predicted value, and N is the
number of data points in the dataset.

Cross-entropy loss is a type of loss function used in machine learning and deep
learning to measure the difference between predicted probability distribution and the
true probability distribution of a classification problem. It is commonly used in multi-class
classification problems and is defined as follows:

LCE = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) + (1− yij) log(1− ŷij) (2)

where N is the number of samples in the dataset, C is the number of classes, yij is a
binary indicator (0 or 1) for whether sample i belongs to class j and ŷij is the predicted
probability that sample i belongs to class j.

In the context of sentence-transformers (see section 2.4.2), these two common losses
can be used with different inputs and targets that are usually constructed using one or

9https://www.sbert.net/

15

https://www.sbert.net/
https://www.sbert.net/

multiple pairs of sentence embeddings and their associated target similarity scores or class
labels.

2.4.3.2 Softmax Loss

We implement the Softmax loss by concatenating the sentence embeddings ui and
vi with the element-wise difference |ui − vi|, multiplying it with the trainable weight
Wt ∈ R3n×k and using the Softmax function:

σ(z)j =
ezj∑C
k=1 e

zk
(3)

The loss to minimize is then the Cross-entropy loss LCE (2) with the following inputs:

ŷij = σ(Wt(ui, vi, |ui − vi|))j (4)

yij =

{
1 if pair (ui, vi) belongs to class j
0 otherwise (5)

where n is the dimension of the sentence embeddings, k the number of labels, and j ∈ C
corresponds to one of C classes.

2.4.3.3 Cosine Similarity Loss

The Cosine Similarity Loss is none other than the MSE Loss LMSE (1) using the cosine
of the input pairs’ embeddings to predict its similarity score prediction ŷi. The target yi
is the ”true” similarity label of the input pairs, between 0 and 1.

ŷi = cos(ui, vi) (6)

2.4.3.4 Margin MSE Loss

This loss was introduced for knowledge distillation and has been used to fine-tune the
current top performing SBERT models for semantic search available on their website. For
a given query Q, we have a positive and a negative answer, respectively P+ and P−, and
train the model to learn from the difference between the positive and negative similarity
scores with the query.
We compute the MSE loss LMSE (1) with the following target and prediction:

ŷi = |sim(Q,P+)− sim(Q,P−)| (7)

yi = |gold_sim(Q,P+)− gold_sim(Q,P−)| (8)
”We train ranking models on batches containing triples of queries Q, relevant passages

P+, and non-relevant passages P−. We utilize the output margin of the teacher model
labels as label to optimize the weights of the student model.” [30]

By default for sentence-transformers, the similarity function sim() is the dot-product
between a query embedding and a passage embedding and gold_sim() is the ”true”
similarity which could be measured by a cross-encoder.

16

2.4.3.5 Multiple Negatives Ranking Loss

According to the SBERT website, the Multiple Negatives Ranking Loss is a great
loss function if you only have positive pairs, for example, only pairs of similar texts like
pairs of paraphrases, pairs of duplicate questions, pairs of (query, response), or pairs of
(source_language, target_language). The input is a list of sentence pairs (ai, pj) with
only one positive example (pi) and n− 1 negative examples (pj, j ̸= i). It then uses these
labels with the Softmax Loss, minimizing the the Cross-entropy loss LCE (2) for softmax
normalized scores [29].

2.4.4 Cross-Encoder Re-ranking

As mentioned in section 2.4.1.1, cross-encoders can not be used to perform semantic
search because the amount of computation needed to find the highest similarity scores
between a query and all available documents is too long. We can still make use of cross-
encoders in a scalable manner if we first use a much faster approach to retrieve the top K
results - such as the dense and lexical approaches introduced in sections 2.4.2 and 2.5.2 -
and use a cross-encoder to re-rank these results.

This usually improves the quality of the very first few results. For example, if we
want to find the top 5 results to a query in a collection of 1’000’000 documents, we
can first retrieve the 100 highest scoring documents with a bi-encoder and then use a
cross-encoder to find the top 5 results out of these 100, which means there are only 100
heavy computations instead of 1’000’000.

2.4.5 Domain Adaptation

In this section we briefly introduce the three state-of-the-art domain adaptation
techniques for pre-training and fine-tuning sentence-transformers in unsupervised and
supervised ways.

2.4.5.1 TSDAE

Transformer-based Sequential Denoising Auto-Encoder [31] is an unsupervised domain
adaptation technique used as a pre-training step. It outperforms the previous pre-training
approach introduced with BERT called Masked Language Modeling (MLM) [12]. Noise is
added to the input sequences by deleting tokens, encoding them into sentence embeddings
and teaching a decoder to reconstruct the original input from the damaged embedding.
Instead of mean pooling to get the resulting sentence embedding, we can use the [CLS]
token in this case. This approach is similar to MLM [12] but the reconstruction must be
done from a single sentence vector as opposed to the full attention tensor of the sentence,
which forces better sentence representations in practice.

2.4.5.2 GPL

Generative Pseudo Labeling [3] is an unsupervised domain adaptation technique for
fine-tuning sentence-transformers. At the time of publication (April 2022) this approach
outperformed previous state-of-the-art dense retrieval methods on the Information
Retrieval Benchmark (BeIR) [4]. GPL consists of the three following steps (see Figure 7):

1. Query Generation: Generate synthetic queries on passages from the target corpus
using a pre-trained query generation model (T5 [32]);

17

2. Negative Mining: Find similar passages to each query generated in step 1 using
pre-trained dense retrievers;

3. Pseudo Labeling: Assign similarity scores to all the generated pairs using a
pre-trained cross-encoder, and use these pseudo-labels to fine-tune a sentence-
transformer.

As we’ve seem in section 2.4.1.1, cross-encoders provide much higher accuracy for
similarity scores than bi-encoders. These accurate labels can be used to train a bi-encoder.
At the end of these three steps, we’ve created a new pseudo-labeled dataset of query answer
pairs, usually with multiple queries for the same passage and because of negative mining
also multiple passages per query. We use the similarity scores from the cross-encoder in
order to fine-tune a new sentence-transformer on our generated dataset using the Margin
MSE Loss (see section 2.4.3.4).

Figure 7: (picture from [3]) Generative Pseudo Labeling (GPL) for training domain-
adapted dense retriever.

2.4.5.3 Augmented SBERT

Augmented SBERT [33] is a supervised domain adaptation technique that allows to
fine-tune sentence-transformers with small amounts of labeled data. Similarly to GPL, a
cross-encoder is used to annotate an augmented dataset which in turn is used to fine-tune
a bi-encoder (see section 2.4.2). The training process starts with a gold dataset of labeled
examples. This gold dataset is small and it is not enough to fine-tune a bi-encoder, so we
need to augment it.

The approach consists of the following steps (see Figure 8):

1. Fine-tune a cross-encoder using the gold dataset (cross-encoder need less fine-tuning
data than bi-encoders);

2. Augment the data to a silver dataset by adding new unlabeled pairs; Thakur et
al. [33] propose multiple approaches for augmentation, the simplest being to sample
random pairs from the gold data, creating new sentence pairs;

3. Label the silver data using the fine-tuned cross-encoder in the first step, and fine-
tune a sentence-transformer using the pseudo labeled silver data combined with the
original gold data.

18

Similarly to the pseudo-labeling step in GPL, we are using the similarity scores from a
cross-encoder in order to fine-tune a new sentence-transformer on the silver dataset using
the Cosine Similarity Loss (see section 2.4.3.3).

Figure 8: (picture from [33]) Domain adaptation with AugSBERT.

2.5 Lexical Search
As we’ve introduced in section 2.1, there are multiple approaches to performing IR

with text data. In section 2.4 we’ve seen that bi-encoders can provide dense embedding
representations that leverage attention to encode semantic meaning, and we can use them
to perform semantic search. In order to measure the performance of such dense vector
search models we typically use a lexical model as a baseline for comparison.

2.5.1 Early Approaches

2.5.1.1 Bag of Words

Before word vectors were introduced, a common approach to encode a document was
to use a Bag of Words representation [34]. To represent a document, we use a vector of the
length of the indexing vocabulary in our corpus (one dimension per indexing word). Such
a vector has in each dimension the count of appearances in the document of its associated
vocabulary word. This is the same as applying one-hot encoding to each indexing word
and summing their one-hot-encoding representations to represent a document. From this
representation we can build classifiers or implement a simple lexical search.

2.5.1.2 TF-iDF

A better way to represent documents is to modify the word counts by taking into
account their frequency in the entire corpus. If a word exists in all documents, then it
is less likely that it will help in differentiating documents. Similarly, if a word exists
only in a given document it should be a determining factor in the representation of that
document.

TF-iDF stands for term frequency- inverse document frequency and is intended to
reflect how important a word is to a document in a collection of documents.

The term frequency of term t in a document d is:

19

tf(t, d) =
ft,d∑

t′∈d ft′,d
(9)

where ft,d is the raw count of term t in document d, i.e., the number of times that term
t occurs in document d.

The inverse document frequency is:

idf(t) = log
|D|

|{d ∈ D : t ∈ d}|
(10)

where |D| is the total number of documents in the corpus D, and df(t) = |{d ∈ D : t ∈ d}|
is the number of documents where the term t appears.

Finally the tf-idf value for each term t in the document d is:

tfidf(t, d) = tf(t, d) · idf(t) (11)
If we want to use this to score the relevancy of document d for query q we need to

sum the tf-idf scores of each of the N terms qi in that query.

tfidf(q, d) =
N∑
i=1

tf(qi, d) · idf(qi) (12)

2.5.2 BM25 Okapi

We introduce BM25 Okapi [5], which is a modification of the TF-iDF representation
specifically intended for information retrieval. With TF-iDF, if a document has a relevant
word appearing twice as much as another, it is considered twice as relevant, which is
usually undesirable in an IR setting. For example if we are looking for the word ”data”,
a document including the word 100 times could be as relevant as a document including
that word 200 times. Instead of TF increasing linearly with the number of occurrences,
we would rather like TF to increase quickly with the first few word occurrences and to
almost stop increasing once the count of occurrences gets saturated. Another factor to
take into account is the length of the document, if a document has very few words and
contains one relevant word, it should be as relevant as a document containing many words
and many times that relevant word.

With iterations over the years, many variants taking into account document length and
term frequency saturation have emerged, one of the most famous being BM25. We choose
the values of k = 1.5 and b = 0.75 considered ”reasonably good in many circumstances” [5].

BM25(d, q) =
N∑
i=1

idfBM25(qi) ·
tf(qi, d) · (k + 1)

tf(qi, d) + k · (1− b+ b · |d|
L)

(13)

where

• qi: i-th term of the query q

• N : the number of terms in the query q

• |d|: number of words in document d

20

• tf(qi, d): the frequency of term qi in document d

• L: the average length of documents in the collection

• k: term frequency parameter

• b: length normalization parameter

and

idfBM25(qi) = log
N − df(qi) + 0, 5

df(qi) + 0, 5
(14)

where

• df(qi): total number of documents that contain the term qi

• Ndocs: total number of documents

Many other modifications can improve the performance of lexical approaches [35] which
we will not detail nor implement in this study. These include stopwords removal, stemming
and lemmatization and n-gram tokenization. There are also some later improvements
to BM25 that render it more suitable to some settings [36], such as using the title of
documents in order to select a first relevant subset on which to perform BM25.

2.6 Other Approaches
We’ve introduced sentence embeddings with SBERT and lexical approaches such

as BM25. There are other state-of-the-art approaches none of which achieve the best
performance across most datasets [4]. ColBERT [8] for example is a late-interaction
model that recently beat the best sentence-transformer (GPL) on the IR Benchmark
(BeIR) with their second version [37]. Because its implementation at the time of writing
is less straightforward and because it is a more memory intensive method, we decided not
to study this model. Another approach worth mentioning is to use OpenAI10 which as
of recently reported on their website an even better average nDCG@10 than ColBERTv2
or GPL on the BeIR dataset with their text-embedding-ada-002 model. Because they are
not open source, and not free we also decided not to include these embeddings in our
study. In addition, they have been reported to perform worse than sentence-transformers
in the past [38]. Since sentence-transformer models are open source, achieve very good
performances on various tasks backed by a series of publications and are accompanied
by a framework allowing domain adaptation and giving access to powerful pre-trained
models, all semantic search models evaluated in this study are sentence-transformers.

10https://platform.openai.com/docs/guides/embeddings/embedding-models

21

https://openai.com/
https://platform.openai.com/docs/guides/embeddings/embedding-models

3 Methodology

3.1 Objectives and Tasks
Considering the objectives initially established in section 1.2 and the background on

information retrieval and semantic search provided in section 2, we outline the scientific
methodology we will follow to reach these objectives.

We want to compare the performance of a range of information retrieval approaches in
the legal domain. Typically IR is evaluated with a set of queries and a set of documents,
we therefore choose to create a dataset of legal documents that will allow us to measure
and compare the performance of these models using standard IR evaluation metrics. For
a full discussion on evaluation metrics, see section 3.3.

The selection of approaches to compare is a collection of sentence-transformers
presented in 2.4 as well as the lexical baseline introduced in 2.5.2. Part of the dataset will
also be used for supervised domain adaptation, which should be evaluated on a different
set of query-passage pairs.

The objectives of this study can be re-formulated with the following tasks:

1. Select a collection of documents containing textual information of interest to legal
experts.

2. Devise a selection of queries of interest to legal experts and with relevant information
contained in the data.

3. Construct a dataset using a range of top performing pre-trained sentence-
transformers for semantic search and a lexical baseline, and conduct an annotation
campaign. These annotations should be used to evaluate the performance of
the models used to construct the dataset, and to fine-tune a new model using a
supervised domain adaptation approach.

4. Apply the three domain adaptation approaches presented in section 2.4.5 using our
collection of documents and queries and gather more annotations and queries from
the new models. These newer annotated query-passage pairs should be used to
evaluate the newly introduced domain adapted models, and to evaluate some of the
initial models on a larger query set.

5. Compare the performance of all selected information retrieval approaches employing
standard IR evaluation metrics for the purpose of identifying which approaches are
worth pursuing in a specialized domain like law.

An example of a chosen legal act can be seen in Figure 9, and a query-passage pair in
Figure 10.

22

3.2 Dataset Creation
We present here the procedure to create a dataset representative of our legal experts’

interests, starting from a publicly available collection of legal texts. This dataset should
allow us to evaluate and compare multiple semantic search models, and draw insightful
conclusions as to which approaches are most relevant to the legal domain and in a real-
word use case.

We use expert judgement to select multiple search queries and to annotate the degree of
relevancy of numerous model answers to these queries. Part of the annotated data should
also be used in an active learning step to evaluate the supervised fine-tuning approach
presented in section 2.4.5.3.

3.2.1 Legal Corpus

The data we will be using is a large corpus of legal texts from the European
Union (EUR-Lex11, see Figure 9). It contains more than 10’000 Legal Texts (including
Jurisprudence (court decisions) and Legislation (laws)) translated in multiple languages
including English and can be easily extracted from the web. The texts contain arguments
on topics that are varied ranging from science and agriculture to customs and finance
with answers to many queries. Sometimes these can be tremendously specific, for example
about a protein contained in a chemical process, or they can have a much broader sense,
such as the definition of ”property”.

Figure 9: A legal act part of the text collection from EUR-Lex.

11https://eur-lex.europa.eu/homepage.html

23

https://eur-lex.europa.eu/homepage.html
https://eur-lex.europa.eu/homepage.html
https://eur-lex.europa.eu/homepage.html

3.2.2 Query Selection

We’ve established in section 3.1 that we wanted to compare the performance of
different IR techniques on a collection of documents. Accordingly we need a set of queries
large enough to accurately compare their performances. With the help of the two legal
experts that have continuously collaborated with us on this project, we select queries that
we consider interesting from a legal standpoint.

3.2.2.1 Requirements

There are two major requirements that guided the process of selecting a set of queries
to evaluate our models on. First of all, the selected queries must be relevant to our corpus
of documents and ideally discuss topics that are addressed multiple times. Without this
requirement we might end up with a labeled dataset of mostly irrelevant pairs, which would
not only prevent us from fine-tuning a model but also restrain our ability to evaluate and
compare the other models. A second requirement is that we need a large enough set
of queries, and as suggested by Christopher Manning in ”Introduction to Information
Retrieval” [39], ”As a rule of thumb, 50 information needs has usually been found to be a
sufficient minimum”.

3.2.2.2 Query Selection using Topic Modeling

In pursuance of creating queries with a guarantee that the topic they address is
discussed, we first implemented Topic Modeling using the default BERTopic approach [24].
We embed all sentences of our corpus with a pre-trained sentence-transformer model
trained for semantic similarity. Then we perform dimension reduction using UMAP [40]
so we can apply a clustering algorithm to the sentence embeddings12. Clustering is done
with HDBSCAN [41] and we then represent each cluster of sentences with the top tf-idf
scoring words across all cluster sentences. The tf-idf scores are class based, meaning
the entire cluster of sentences is considered as the document. In this case, we make the
hypothesis that clusters can be considered as topics. The first few topics with the most
sentences represented by their top c-tf-idf scoring words can be found in Appendix B.

Topic Modeling allowed us to explore the dataset and its contents and initiated the
discussion on how to select a set of interesting queries for our study. We can already see a
varied range of topics mentioned in the documents, such as electricity, insecticides, alcohol,
anti-dumping... And we can easily imagine to write some search queries associated to the
found topics, such as a definition query.

With such an approach there are two major caveats to consider. First, creating queries
only relevant to the largest clusters would not be representative of useful legal information
needs, we would therefore have to select topics at random on which we would create
associated queries. Also, only using the top tf-idf words in our queries not only biases
the lexical gap between query and documents but it also leads to queries that are too
simple and of little interest to end users searching for information across the corpus. We
concluded by establishing that detailed search queries would allow to more easily evaluate
the degree of relevancy of a relevant document as opposed to a simple keyword search
where relevancy would be binary.

12The dimension reduction being memory intensive we’ve had to reduce the data by keeping only texts
since 2018 which is little over 300k sentences.

24

We can imagine looking at more than one representative word for each cluster, for
example in topic 28 of Appendix B, the words ”imposing”, ”definitive”, ”anti”, ”dumping”,
”china” are the most frequent in that cluster. Combined together we could form a more
ellaborate query, such as ”Which imports originating from china have had anti-dumping
duties imposed?”. The issue with creating more complex queries from looking at topic
modeling results is that we can not know if the answer exists in the corpus, which once
again might have led us to annotate mostly irrelevant documents. For all these reasons
we decided to use a query generation model instead.

3.2.2.3 Generative Model

The next step we considered to create a set of queries to evaluate is using the T5[32]
query generation model proposed in the GPL approach [3]. The model has been trained
on the MSMARCO [42] dataset, a large IR dataset containing anonymized queries asked
through the Bing search engine, and human generated answers for each of these. With
the help of legal experts we select a subset of these randomly sampled queries that
covers an interesting range of information needs containing legal acronyms, definition,
and explanation queries. With this approach, each query has been generated on an
existing passage of the data which partially ensures there is at least one good answer that
the search models can find. Browsing and selecting queries generated by the T5 model
also gives valuable insight into the GPL method and its learning ability on our corpus.
Furthermore, we need many queries that cover a wide range and this is the most efficient
method to find them. The selected queries can be found in Appendix A.

Here’s an example of a query and part of the passage it was generated from:

What does a reference laboratory do?
Verification of performance and compliance with common specifications or with other
solutions chosen by the manufacturer 1. For the purposes of the task referred to in Article
100(2), point (a), of Regulation (EU) 2017/746, [...] 1. EU reference laboratories shall
verify the performance of the device and its compliance with common specifications or
with other solutions chosen by the manufacturer as set out in paragraph 1 based on the
results of the laboratory tests referred to in paragraph 2. 4. EU reference laboratories shall
provide their opinion within 60 days after the latest of the following dates: (a) the date of
signature of the contract referred to in Article 10(1), point (a), by all contracting parties;
(b) the date of receipt of all the necessary documentation and information from the notified
body as referred to in Article 11, paragraph 2, and clarifications referred to in Article 11,
paragraph 3; (c) the date of receipt of equipment from and completion of any training by
the manufacturer as referred to in Article 11, paragraph 4; (d) the date of receipt of the
samples of the device to be tested. The opinion of the EU reference laboratories shall be
detailed and shall provide reasons for the conclusions and recommendations made.

3.2.3 Fine-Tuning & Evaluation Requirements

We would like to create a dataset that will be used for fine-tuning with Augmented
SBERT [33], which should therefore be at least in the range of 2000-60000 labeled example
pairs for the gold dataset. This in combination with the 50 queries rule of thumb means
we need at least 40 annotated answers per query.

25

We also need to annotate query/answer pairs with a label indicating the degree of
relevancy of the answer to the associated query. One way of implementing this is to use
labels between 0 and 5 like in the STS datasets [28]. As suggested in [33], we can convert
the labels to a continuous similarity score between 0 and 1 by dividing the labels by 5,
which can then be interpreted as the similarity between the two associated embeddings.

Finally, most of the previously mentioned IR related publications use a specific IR
evaluation measure, the nDCG@10. This measure is described in section 3.3 but already
mentioned here as it is an evaluation on the top 10 results for a given query. This
implies we need at least 10 results per query and per model if we also want to report the
nDCG@10.

3.2.4 Retrieval Span and Context

As we’ve seen in section 2.3, the input of the original transformer was limited to 512
tokens, and this has stayed the case with many encoder based transformer architectures
such as BERT, leading to an important limitation of dense vector search over other
approaches: we can only encode texts that have less word-piece tokens than 512. The size
of the passages from our legal documents we are searching through should therefore be
limited to 400 words which roughly corresponds to the input token limit of the English
transformer models used, 512 tokens.

One has to decide how to separate these passages. This could be to separate them in
paragraphs if they are not too long on average, unfortunately the data is not structured
enough for robust paragraph extraction and there were other priorities. Another option
would be simply to split the legal texts into groups of sentences containing less than 400
words, but there is a risk that an answer will be separated in two different groups.

We experimented with including passages of varying lengths starting from every
sentence but the semantic search models would mostly output overlapping passages in
this situation instead of selecting different answers. Finally we came to the conclusion
that splitting the texts in sentences was a good approach, as long as the assessors have
access to the surrounding context of that sentence. Sentence segmentation is done using
the dependency parsing implementation [43] [44] from spaCy [45].

3.3 IR Evaluation Metrics
We would like to evaluate the ranking of a set of retrieved passages given a query and

aggregate this evaluation between multiple queries. For this we usually need the ideal
ranking of a retrieval system’s answers. An issue that arises is that while an IR system
might be excellent at ranking its first K proposed results, it can fail to provide the best
possible answer from the document collection (which is much larger than K). In some
TREC13 datasets for example (Text REtrieval Conference), only the most 100 relevant
answers to each query are annotated, and this can have harmful effects on evaluation [46].

When evaluating the first K answers of such a system in a realistically large document
set, it is impossible to collect exhaustive relevance judgements, so we might not know what
is the real best possible answer. Also called the ”IR recall problem” [47], it complicates
proper comparison of IR metrics applied on diverse datasets and even renders some metrics
generally unused, such as Recall. People usually select Precision@10 or nDCG@10.

13https://trec.nist.gov/

26

Since we are mostly interested in finding relevant results, we also need to compare
some measure of the quality of the very few first answers, regardless of their order. A
measure that indicates if we have been able to find what we were looking for in those first
documents or not. For example if one model always outputs K top scoring answers when
another mostly outputs mediocre K answers, it is easy to choose.

Annotations that indicate the degree of relevancy on a scale from 0 to 5 can be used
to calculate all the following evaluation metrics. Those will be used to report, interpret
and compare the performance of our models in section 4. Binary judgements have more
traditionally been used. Conversion from [0, 5] to {0, 1} can be easily done with a threshold
at 3: all relevancy judgements above 3 included are converted to 1 and all below are
converted to 0. This loosely aligns with our annotation guidelines (see section 3.5.1)
considering that relevancy is a subjective matter and that a score of 3 is assigned when
the topic of the query is discussed.

3.3.1 nDCG@K

Today, the most widely used metric to evaluate textual IR is the normalised discounted
cumulative gain (nDCG) on the K top results retrieved. As opposed to other order-aware
metrics such as mAP@K or MRR that use binary relevancy annotations, nDCG@K can
make use of ordinal relevancy labels relk just like the 0 to 5 range we’ve decided to use.

The cumulative gain CG@K is the sum of the relevancy scores relk from the first
to the K-th result. The discounted cumulative DCG@K gain uses the cumulative gain
CG@K and a logarithmic discount log(1 + k) that makes it order-aware.

CG@K =
K∑
k=1

relk (15)

DCG@K =
K∑
k=1

relk
log(1 + k)

(16)

nDCG@K =
DCG@K

iDCG@K
(17)

Finally, the ideal Discounted Cumulative Gain iDCG@K is the same discounted sum
using the ideal relevancy scores of that sequence if we picked the best possible ordering of
answers existing in our corpus. We divide the DCG by the ideal DCG for normalization
purposes. We note the calculation of the iDCG@K is highly dependent on the distribution
of the available relevance judgements which are often partial. We generally consider all
unavailable relevance judgements as irrelevant which still allows us to use the nDCG@K
for comparison purposes.

3.3.2 mAP@k

Another widely used metric is P@K, the Precision on the first K results with binary
relevancy.

brelk =

{
1 if item at the kth rank is relevant
0 otherwise (18)

27

P@K can be defined as the fraction of relevant items in the top K recommended items,
or the proportion of relevant items amongst retrieved items.

P@K =
NK

K
(19)

with NK =
∑K

k=1 brelk being the number of relevant documents for a given query in the
first K results.

Some queries might only have 5 relevant results while others have more than 20. To
compensate for this variability across queries we use the mean average precision score.
The mAP@K is a mean of the average precision values AP@K for each query with the
AP@K itself being the average between P@1, P@2, ..., P@K. While this measure is
less intuitive it has been shown to be more stable and informative than simply averaging
P@K [48].

AP@K =
1

NK

K∑
k=1

P@k · brelk (20)

To obtain the mAP@K we only average the precision at relevant k values.

mAP@K =
1

Q

Q∑
q=1

AP@K(q) (21)

where Q is the number of queries and AP@K(q) is the AP@K of the retrieved documents
for query q.

3.3.3 MRR

Another commonly used metric in Information Retrieval is the Mean Reciprocal Rank
(MRR) which measures the quality of the ranking in terms of the rank of the first relevant
document retrieved. MRR is particularly useful in scenarios where users are interested
in finding only one relevant document. It only takes into account the rank of the first
relevant document and ignores the ranks of subsequent relevant documents, which can be
important in certain scenarios.

The MRR is calculated as follows:

MRR =
1

Q

Q∑
q=1

1

rankq
(22)

where Q is the total number of queries, and rankq is the rank of the first relevant
document retrieved for query q. If no relevant documents are retrieved for a particular
query, the corresponding rankq is set to infinity.

3.3.4 mAR@k

Perhaps the most intuitive evaluation measure utilizing our ordinal relevancy scores
and with significant usefulness for comparison is the mean of the average relevancy score
of the first K answers of a model, that we will call mAR@K. We first compute the
average relevancies up to K for each query and then compute the mean of these average
relevancies across all queries.

28

AR@K =
1

K

K∑
k=1

relk (23)

mAR@K =
1

Q

Q∑
q=1

AR@K(q) (24)

where again Q is the number of queries, AR@K(q) is the average relevancy AR@K for
query q and relk is the discrete relevancy score of answer k between 0 and 5.

3.4 Rater Agreement Metrics
There are multiple ways to assess the agreement between two raters. For ordinal

variables like our discrete values from 0 to 5 we typically use Spearman or Kendall’s rank
correlation coefficients.

3.4.1 Spearman’s rho

Spearman’s rank correlation coefficient ρs is often used to compare rankings. It is none
other than a correlation coefficient computed on the ranks of two series of observations.

ρs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(25)

where di is the difference between the two ranks of each observation and n is the total
number of observations.

3.4.2 Kendall’s tau

Kendall’s rank correlation coefficient τA measures the strength of association of two
rankings.

τA =
nc − nd

n0

(26)

where n0 = n(n− 1)/2 is the number of pairs of observations to compare between two
rankings, nc is the number of concordant pairs, nd is the number of discordant pairs and
n refers to the total number of observations in each ranking.

3.5 Annotation Campaign
Creating a fully annotated dataset that accurately matches the distribution of the

real dataset is a challenging task that requires annotating many low-scoring answers.
However, the cost of annotation can quickly become prohibitive, making it essential to
balance the cost of annotation with the value of the annotated data. Additionally, we wish
to evaluate the performance of a supervised fine-tuned model on new annotated data. We
should avoid annotating too many negative answers for queries with a significant number
of positive answers, allowing us to focus on obtaining enough fine-tuning ability.

We contract our assessors via the Upwork platform14. Two people have been carefully
selected in a pool of candidates that all have a legal background, mostly paralegals with a

14https://www.upwork.com/

29

https://www.upwork.com/

degree in law. The other criteria for selection were mostly based on cost and availability.
Semantic search can be very subjective and sometimes hard to solve, especially when
having to annotate on a grid between 0 and 5. To have a measure of how tricky some
search results can be to judge, we used the two annotators to rate every query-passage
pair.

3.5.1 Guidelines

Here are the annotation guidelines we provided to our selected annotators.

Your job is to rate answers between 0 and 5 (5 is a very good answer and 0 is completely
irrelevant).
Please keep in mind that the goal is to find a relevant passage in a fixed corpus of legal
documents (here all European court decisions since 2018). We want to evaluate if the tool
points the user in the right direction given a search query.
Most importantly: Don’t overthink, it should be your judgment. But here are a few
guidelines to give an idea.

- If the answer contains a reference to an article that seems to contain the answer: 5
- If the answer is a detailed description or an overall description of the answer: 5
- If the answer is partial: 4
- If the answer is implied: 4
- If the right topic is discussed but the answer is not contained: 3
- If a close topic is discussed but the answer is not contained: 2
- If the answer is unrelated: 1
- If the answer doesn’t make sense at all: 0

Then followed a series of instructions on how to use the app you can see a screenshot of
in Figure 10. They can select questions one by one and annotate all their answers.

3.5.2 Annotation Files

We give a .json file containing the first fifteen answers from multiple models to different
queries and provide a url with a custom annotation application where an assessor can rate
the proposed sentences between 0 and 5 while seeing their context and title.

Different files are generated three times in the duration of the project. For every
file generated, we use multiple models to retrieve the top 15 results of different
models on varying queries. Generating these files for annotation efficiently requires
maintaining indices to go back and forth between the text embeddings (which are
computed beforehand), their corresponding passages, the document titles, the context
of the passages, and the relevancy score that has been annotated. It also requires to
format back and forth the annotations and manage the duplicate query-answer pairs that
multiple models have provided. Details on these files are reported in section 3.5.3. The
general approach to generate is depicted in Figure 11.

30

Figure 10: Example of a relevant passage from EUR-Lex shown with its context and title
on the annotations application. They can rate from 0 to 5 and it automatically goes on
to the next task to annotate.

Figure 11: Flowchart: How annotation files with unique pairs are generated for a set
of queries and a given document collection. After the passages for each query and each
model have been retrieved, we combine the different model pairs back together and keep
the duplicate pairs aside. All this is done while keeping track of which model retrieved
each answer (model_id), but also additional data not depicted here, such as the document
information (title, id, surrounding text) and the score and ranking attributed by each
model.

3.5.3 Three Tier Approach

The approach to simultaneously construct a dataset and evaluate and fine-tune some
models is loosely planned from the start and adjusted along the way. We first want to

31

make sure we have a look at the data and select a handful of queries, then that the
annotation set up is running as expected and that the results of the very first selections
are encouraging. We can then design experiments that contribute to a proper evaluation
of some of the best existing solutions. We mainly have two datasets, one for fine-tuning,
and one for final evaluation only. The former is used in a supervised task with Augmented
SBERT from section 2.4.5.3 and an unsupervised task with GPL to evaluate the effect
of the number of training steps on its performance. The latter is used to evaluate these
two fine-tuning models, and is used in combination with the first dataset to evaluate the
other four models we enumerate in 3.5.3.1.

3.5.3.1 Round 1: Model Selection

We select three top performing pre-trained semantic search sentence-transformers
which have BERT-base, DistilBERT or MPNet architectures fine-tuned on multiple
datasets. These can be found on the sentence-transformers repository in HuggingFace.

• The msmarco-bert-base-dot-v5 and msmarco-distilbert-dot-v5 have been trained
on 500K QA pairs from the MS MARCO dataset [42](Bing search queries).

• the multi-qa-mpnet-base-dot-v1 is trained on 215M QA pairs from: WikiAnswers,
PAQ, Stack Exchange, MS MARCO, GOOAQ, Amazon-QA, Yahoo Answers,
SearchQA, ELI5, Quora Question Triplets, Natural Questions, SQuAD2.0,
TriviaQA.

We also implement a BM25 search with default parameters b = 0.75 and k = 1.5. This
round is intended to make sure the annotation guidelines are correct and the application
is working as expected. It is also to have a first idea of performance from different models
on our own data. We annotated the first 15 answers from the 4 models above for 15
different queries. We also implement re-ranking of the top 15 answers by using a top
performing cross-encoder, the cross-encoder/ms-marco-MiniLM-L-12-v2, also fine-tuned
on the MS MARCO dataset.

3.5.3.2 Round 2: Active Learning

Once the framework to annotate and the models have been tested, we gather more
information with these same models, adding some GPL model answers to the annotations
and now a total of 50 queries, including the first 15. The GPL parameters and process
are detailed in section 4.2.1. We additionally adjust the initial guidelines using the raters’
feedbacks, ensuring the clarity of their job15 before the next round.

3.5.3.3 Round 3: Evaluation

The data from the previous round is used to select the best number of training
steps for GPL. We also experiment with using longer non-overlapping passages that we
construct by joining groups of sentences together, which lead to better queries overall and
a higher performance. Round 2’s data is also used as the gold data to fine-tune using the
Augmented SBERT method (2.4.5.3).

15In the first round of annotations, by looking closely at the annotations with most disagreements
between the two raters we were able to identify that one of them thought he had to rate the retrieved
passages in their entirety, even if they contained a perfect answer.

32

3.5.4 Resulting Data

We will refer to the resulting annotated query answer pairs from round 2 as (Q2, D2)
and from round 3 as (Q3, D3). When combined using only the passages retrieved by
models that we applied for the construction of both datasets, namely the three pre-trained
sentence-transformers and BM25, we refer to the dataset as (Q23, D23). The results in
section 4 will always concern one of the three settings.

D2 was generated on the first set of 50 queries Q2, using 5 different models and their
top 15 answers per query, resulting in 3750 annotated query-passage pairs. Since multiple
models provide the same answers we remove duplicates before annotation and propagate
back the labels afterwards for evaluation. Duplicates removal is done by considering a
passage as well as its surrounding context which the annotator has access to. (Q2, D2)
actually has only 2411 unique query-passage pairs.

Similarly, D3 has been created using 50 other queries Q3 and the 15 top answers for
each query using 6 different models. They are the same models as the ones used to create
D2 except for the GPL model, which we improved in between (discussed in section 4.2.1).
The 6th model is the AugSBERT model that was trained on (Q2, D2) and should only be
tested on (Q3, D2). This results in 4500 annotated query-passage pairs out of which 3072
are unique.

Finally, (Q23, D23) was generated using the four starting models on the first set of 50
queries Q2

16 and the same four on query set Q3, resulting in 6000 annotated query-passage
pairs for 100 queries. Examples of query-passage pairs can be found in Table 1.

model_id k query passage round
multi-qa-mpnet-base-dot-v1 5 What are the

macroeconomic
indicators?

The macroeconomic indicators
are: production, production
capacity, capacity utilisation,
sales volume, market
share, growth, employment,
productivity, magnitude of
the amount of countervailable
subsidies, and recovery from
past dumping or subsidisation.

2

msmarco-bert-base-dot-v5 4 What measures
should hosting
service
providers
take to prevent
terrorism?

Hosting service providers
shall set out clearly in their
terms and conditions their
policy for addressing the
dissemination of terrorist
content, including, where
appropriate, a meaningful
explanation of the functioning
of specific measures, including,
where applicable, the use of
automated tools.

3

Table 1: Examples of query-passage pairs generated in Rounds 2 and 3. Both pairs belong
to (Q23, D23), the first from Round 2 belongs to (Q2, D2) and the second from Round 3
belongs to (Q3, D3).

16There were five models in round 2, but we’ve discarded the answers from the first GPL model. It can
not be evaluated on the new set a queries because we haven’t used it in the next round, so its answers
have not been annotated.

33

4 Results
In this chapter, we present results using our two collected datasets (see section 3.5.4)

in various ways. We gain insight on the level of agreement of our two annotators for
the studied task (see section 3.5), present our training results of the domain adapation
techniques for sentence-transformers, and provide two tables of binary and ordinal
relevancy IR evaluation metrics.

First we explore the results from the annotation protocol and present measures of inter-
annotator agreement. Second we describe the training process results for our two domain
adaptation methods. Finally, we compare the performance of all presented approaches
with the support of various evaluation metrics.

4.1 Inter-Annotator Agreement
In Figures 12 and 13 we show the distribution of relevancy scores given by two different

annotators for the same task. These are the relevancy scores for the 15 top answers of
4 different models to 100 different queries (Q23, D23). The domain adapted models are
not shown as they can only be assessed on the passages retrieved with the last 50 queries
(Q3, D3).

Figure 12: Judgements of rater A on four models evaluated on 100 queries (Q23, D23)

Figure 13: Judgements of rater B on four models evaluated on 100 queries (Q23, D23)

34

For the data presented here, the rater agreement metrics are τA = 0.375 and
ρs = 0.465. These rank correlation measures are low but they still indicate a moderate
correlation between the two raters. At first glance it seems that the major differences
between both annotators are due to a shift of 1 in the relevancy assessment.

In all the following results, we obtain our gold labels both for evaluation and supervised
fine-tuning by averaging the labels from our two annotators. We discard any query-
passage pair where the disagreement is strictly larger than 2 which we consider as outliers.
On the data presented above these strong disagreements amount to 11% of the data. For
a more detailed analysis of rater disagreements see Appendix C.

4.2 Domain Adaptation
4.2.1 GPL

Following the recommendations from the GPL publication (see section 2.4.5.2),
we initialize our model with a DistilBERT model that has already been trained on
MSMARCO data with the Margin MSE Loss (see section 2.4.3.4). The rest of the
parameters and model choices are also the same as in the publication [3]: a DocT5Query
model trained for query generation on the MSMARCO dataset, using nucleus sampling
with temperature 1.0, k = 25 and p = 0, two DistilBERT and MiniLM dense retrievers
with cosine-similarity trained on MSMARCO from Sentence-Transformers, and for pseudo
labeling, we use a cross-encoder trained on MSMARCO. Fine-tuning for 100k steps takes
about 14 hours with batch size 32 on a single NVDIA A100 GPU. Evaluation on the first
annotated 50 queries (Q2, D2) allows to select the best performing GPL model at 140k
steps of which the results on the 50 other queries (Q3, D3) are reported in Tables 3 and 4.

Figure 14: Average nDCG@10 on the 50 first queries (Q2, D2) for different training steps.
The performance of GPL plateaus after 100k steps.

Since it has been reported to result in even better performance, we also experimented
with TSDAE, the pre-training approach presented in section 2.4.5.1. Evaluation on our
first 50 queries (Q2, D2) showed a decrease in the nDCG@10 whether we trained for 1 or

35

10 epochs. Figure 15 suggests TSDAE pre-training should lead to a better nDCG@10
from the start of GPL training, and there is little reason to believe a lower performing
initial checkpoint could lead to better results. Additionally we implemented the original
TSDAE approach with a BERT-base17 model instead of a DistilBERT model.

To apply TSDAE pre-training on a DistilBERT model instead we would need to
implement extra steps which are not provided by the sentence-transformers library. This
is due to the fact that the original DistilBERT did not provide support for being used as
a decoder. For these reasons we do not include our results for TSDAE in this study.

Figure 15: (picture from [3]) Influence of the number training steps on the averaged
performance. The performance of GPL begins to be saturated after 100K steps. TSDAE
helps improve the performance during the whole training stage.

4.2.2 AugSBERT

We fine-tune a sentence-transformer model using the Augmented SBERT approach
presented in section 2.4.5.3. Our gold dataset is the set of 2411 unique labeled query-
passage pairs (Q2, D2), from which we’ve dropped duplicates based on the passage only
this time, instead of the passage and its context (see section 3.5.4). We actually have
2075 unique pairs for training, with only 50 unique queries.

In the first step we fine-tune a cross-encoder with our gold data starting from a
bert-base-uncased checkpoint during 1 epoch. We then create a larger silver dataset by
including all possible combinations of query-passage in the gold data. Thirdly, we use our
fine-tuned cross-encoder to label all the newly created pairs in our silver dataset. After
duplicates removal our silver dataset has 11’681 query-passage pairs out of which 9606
have been labeled by the cross-encoder. Finally, we use the silver dataset to fine-tune a
sentence-transformer, again starting from bert-base-uncased and training for 1 epoch.

We verify that the fine-tuning has improved the performance of our cross-encoder and
sentence-transformer on the training set by calculating the Spearman rank correlations18

between the gold labels and the predictions, which is reported in Table 2. A better
17BERT exists in different sizes, a smaller size often performs worse but inference is much faster.
18We’ve introduced the Spearman rank correlation in section 3.4.1 in the context of rater agreement.

It is also commonly used to compare rankings of different IR approaches, just like in the original SBERT
publication [2].

36

performance of the fine-tuned bi-encoder over the fine-tuned cross-encoder already
suggests that we might have over-fitted the set of queries.

Model pre-trained fine-tuned
cross-encoder 0.66 0.82
bi-encoder 0.57 0.86

Table 2: Spearman rank correlation with the gold labels from (Q2, D2). First comparison
between our fine-tuned cross-encoder to a top performing cross-encoder trained on the
MSMARCO dataset [42], the ms-marco-MiniLM-L-12-v2. Second comparison between
our fine-tuned sentence-transformer to one of the top performing pre-trained sentence-
transformers we’ve introduced in section 3.5.3.1, the multi-qa-mpnet-base-dot-v1.

4.3 Comparative Analysis
4.3.1 Cross-Encoder Re-Ranking

To re-rank our models, we use a top performing cross-encoder that has been trained
on the MSMARCO dataset: ms-marco-MiniLM-L-12-v2. We calculate the cross-encoder
scores for all the previously annotated query-answer pairs of each model and re-rank the
passages accordingly. Using a cross-encoder in such a fashion - on only 15 results that
have first been retrieved - remains a scalable approach as it takes less than one second
on average using a laptop CPU. The results in Table 3 show that re-ranking almost
consistently improves the nDCG@10 for all the models, but the mAR@10, showing the
true quality of the top answers, does not really benefit from it. The ordering is always
improved but the average relevancy suffers from this reordering for half the model answers.
We also report plot the data from Table 3 in Figure 16 where we can visually interpret
the standard deviations of the metrics for each model across all queries.

Model nDCG@10 mAR@10
multi-qa-mpnet-base-dot-v1 0.88 ± 0.09 2.98 ± 1.42
msmarco-bert-base-dot-v5 0.86 ± 0.10 3.01 ± 1.38
msmarco-distilbert-dot-v5 0.85 ± 0.12 2.94 ± 1.43
gpl 0.86 ± 0.13 2.91 ± 1.35
bm25 0.72 ± 0.21 1.85 ± 1.41
augsbert 0.61 ± 0.28 1.55 ± 1.40
multi-qa-mpnet-base-dot-v1-ce 0.91 ± 0.07 3.01 ± 1.38
msmarco-bert-base-dot-v5-ce 0.89 ± 0.08 2.97 ± 1.40
msmarco-distilbert-dot-v5-ce 0.88 ± 0.10 2.92 ± 1.42
gpl-ce 0.89 ± 0.10 2.86 ± 1.35
bm25-ce 0.84 ± 0.17 1.95 ± 1.40
augsbert-ce 0.78 ± 0.27 1.71 ± 1.42

Table 3: IR evaluation metrics @10 based on the ordinal relevancy scores on the last 50
queries (Q3, D3). Models ending with ”-ce” have had their top 15 answers for each query
re-ranked with a cross-encoder.

37

(a) (b)

Figure 16: Bar-plot of ordinal relevancy evaluation metrics with standard deviation error-
bars. Data from Table 3.

4.3.2 Sensitivity to k

(a) nDCG@k (b) mAR@k

Figure 17: Evaluation results on the passages retrieved from the 50 queries (Q3, D3).
Results averaged across queries for each model.

38

(a) nDCG@k (b) mAR@k

Figure 18: Evaluation results on the passages retrieved from the 50 queries (Q3,D3).
Results averaged across queries for each model. All models have had their top 15 answers
per query re-ranked with a cross-encoder.

We want to make sure that reporting the results for k = 10 like most other IR studies
remains a reasonable choice. We can see that in most situations there is only a small
variation in the model performance ranking depending on k. The models are almost
parallel across k which means it is fair to select 10, where there is little variance, to
distinguish between them.

4.3.3 Binary Relevancy Results

Here we present more results on (Q3, D3), this time using the threshold of 3 to convert
our labels to binary, as we’ve introduced in section 3.3. This allows to report different
metrics, such as a different nDCG@10 than the one that used ordinal variables, P@10,
mAP@10 and the MRR. Again the results in Table 4 are plotted in Figures 19 and 20.

Model nDCG@10 P@10 mAP@10 MRR
multi-qa-mpnet-base-dot-v1 0.74±0.24 0.56±0.48 0.64±0.24 0.85±0.30
msmarco-bert-base-dot-v5 0.76±0.22 0.51±0.48 0.65±0.25 0.83±0.30
msmarco-distilbert-dot-v5 0.72±0.25 0.54±0.49 0.62±0.27 0.85±0.27
gpl 0.69±0.28 0.36±0.49 0.59±0.32 0.81±0.33
bm25 0.46±0.32 0.20±0.46 0.34±0.28 0.65±0.28
augsbert 0.43±0.38 0.19±0.42 0.33±0.32 0.55±0.35
multi-qa-mpnet-base-dot-v1-ce 0.73±0.27 0.59±0.36 0.65±0.30 0.85±0.28
msmarco-bert-base-dot-v5-ce 0.73±0.25 0.64±0.48 0.65±0.34 0.83±0.30
msmarco-distilbert-dot-v5-ce 0.74±0.20 0.52±0.49 0.63±0.31 0.85±0.27
gpl-ce 0.75±0.27 0.53±0.49 0.60±0.31 0.81±0.33
bm25-ce 0.51±0.33 0.32±0.47 0.35±0.28 0.65±0.42
augsbert-ce 0.43±0.35 0.24±0.45 0.30±0.32 0.55±0.45

Table 4: IR evaluation metrics @10 based on the binary relevancy scores on the last 50
queries (Q3, D3). Models ending with ”-ce” have had their top 15 answers for each query
re-ranked with a cross-encoder.

39

(a) (b)

Figure 19: Bar-plot of binary relevancy evaluation metrics with standard deviation error-
bars. Data from Table 4.

(a) (b)

Figure 20: Bar-plot of binary relevancy evaluation metrics with standard deviation error-
bars. Data from Table 4.

40

4.3.4 Discussion

Considering the nDCG@10 results reported in Table 3 and Figure 16, we can
confidently say that cross-encoder re-ranking consistently improves the order of the top
10 results. Regarding the quality of the top 10 answers, the mAR@10 does not seem
to be consistently improved (nor worsened). If we want to verify this observation using
the binary relevancy results in Table 4 and Figures 19 and 20, the nDCG@10 does not
indicate much and the MRR remains the same, but the mAP@10 is almost consistently
improved. With this information we can reasonably assume that cross-encoder re-ranking
always improves the ranking of all the selected IR techniques on legal documents. The
slight discrepancies between the two tables suggest the information provided by ordinal
labels can be a determining factor in model comparisons.

Again looking at Tables 3 and 4, we can compare the different model performances.
First of all, we see that the top performing models are the three pre-trained MPNet, BERT
and DistilBERT sentence-transformers, with BERT being almost consistently better than
the DistilBERT model. Furthermore, the distinction between the performance of the
MPNet model (trained on multiple datasets including MSMARCO) and the BERT model
(trained only on MSMARCO) is subtle. Since binary results lead to slightly different
deductions, we consider that the three models have similar performances.

The supervised domain adaptation using Augmented SBERT leads to the worst
performing model in all scenarios. There are many reasons that could explain why fine-
tuning on (Q2, D2) did not lead to a good performing performing model on a new set of
queries. It is likely that we need a larger set of queries to start with. Originally [33], the
gold data contains unique pairs of similar sentences, but we’ve used the same queries with
different passages multiple times. Additionally, we augment the dataset with this same
set of queries and the model probably over-fits these 50 queries. This could explain the
significant better performance obtained on the training dataset after fine-tuning (reported
in Table 2) compared to the poor performance reported on the evaluation dataset (Q3, D3).
An example of the improved performance on one query from the training data is shown
in Table 5.

The other domain adaptation technique we’ve implemented, GPL, has an overall good
performance, but does not beat the ordering or the quality of the passages retrieved
by any of the pre-trained sentence-transformers. This indicates the technique might be
worthwhile in out-domain settings where pre-trained models do not perform so well, if we
consider it’s been trained in a completely unsupervised way and starting from a BERT-
base checkpoint.

Finally, we expected the combination of BM25 and cross-encoder re-ranking to
outperform all other approaches, but BM25 has the second to last performance. This
is most probably due to the fact that re-ranking is only done in a very scalable way on
only the first 15 results, as opposed to re-ranking a larger set of documents. We also used
a very simple implementation of BM25 which can be improved with preprocessing steps
and parameter tuning.

41

k pre-trained fine-tuned
1 In addition, according to the Court (17), the

purpose of investigations conducted in accordance
with Article 23 of the basic Regulation is to ensure
the effectiveness of anti-dumping duties and to prevent
their circumvention.

The Commission recalled that the purpose of imposing
anti-dumping measures is to restore a level playing
field so that Union producers and third country
producers compete on a level playing field.

2 In addition, according to the Court (18), the
purpose of investigations conducted in accordance
with Article 13 of the basic Regulation is to ensure
the effectiveness of anti-dumping duties and to prevent
their circumvention.

The Commission recalled that the objective of anti-
dumping measures is to eliminate unfairly priced
imports from the Union market in order to re-establish
a level playing field for all market participants.

3 Thus, having evidence tending to show continuation
of dumping is sufficient to trigger an investigation
on whether there is continuation or recurrence of
dumping.

It should be recalled that the purpose of the anti-
dumping measures is not to prevent imports, but to
restore fair trade and ensure that imports are not made
at dumped and injurious prices.

4 Rather, the objective of an investigation pursuant to
Article 11(3) of the basic Regulation is to determine
whether there is a lasting change of circumstances that
warrants the re-calculation of the anti-dumping duty
for the applicant.

The Commission noted that the aim of the anti-
dumping measure is to re-establish fair competition
in the Union market.

5 The investigation therefore focused on the likelihood
of a recurrence of dumping should the anti-dumping
measures be repealed.

Furthermore, the purpose of the imposition of the anti-
dumping measures is not to stop the imports but to
restore the level playing field on the Union market.

6 The investigation will be concluded, pursuant to
Article 11(5) of the basic anti-dumping Regulation,
within nine months of the date of the entry into force
of this Regulation.

Nevertheless, it is recalled that the purpose of the
imposition of the anti-dumping measures is not to stop
the imports but to restore the level playing field on the
Union market.

7 The recovery of the Union industry from past
dumping practices was thus ongoing when the present
investigation started.

Under the consistent case-law of the Court of Justice,
the sole purpose of a regulation extending an anti-
dumping duty is to ensure the effectiveness of that
duty and to prevent its circumvention.

8 Under the consistent case-law of the Court of Justice,
the sole purpose of a regulation extending an anti-
dumping duty is to ensure the effectiveness of that
duty and to prevent its circumvention.

The investigation will be concluded, pursuant to
Article 11(5) of the basic anti-dumping Regulation,
within nine months of the date of the entry into force
of this Regulation.

9 The original anti-dumping investigation was initiated
in February 2019 and definitive anti-dumping duties
were imposed in April 2020 (see recital (1)).

According to WTO Panel report on United States
– Anti-dumping and countervailing duties on
certain products and the use of facts available
(16), when applying facts available investigating
authorities are required to select, in an unbiased and
objective manner, those facts available that constitute
reasonable replacements for the missing ‘necessary’
information in the specific facts and circumstances of
a given case.

10 Their analysis allows the assessment of any undue
negative impact on the parties concerned by the anti-
dumping measures in place.

The allegations in the complaint requesting the
initiation of an anti-dumping investigation estimate
an average dumping margin of 123 % and an average
injury elimination level of 43 % for the product
concerned.

Table 5: Top 10 answers to the query ”What is the purpose of an anti-dumping
investigation?”. Results between the pre-trained and fine-tuned models are different,
and it seems the combined results from the fine-tuned model provide more information
relevant to the query overall. We note that while the Spearman rank correlation between
the gold labels and the model scores is of 0.16 for the pre-trained and 0.85 for the fine-
tuned model on this query, the real improvement is mild.

42

5 Conclusion and Perspectives

5.1 Key takeaways
We’ve successfully addressed our objectives stated in sections 1.2 and 3.1 and

summarize the key takeaways below:

• Ordinal labels can be a determining factor when drawing conclusions about different
IR approaches.

• Cross-Encoder re-ranking consistently improves semantic search results on legal
documents.

• Using BM25 in a scalable manner (with cross-encoder re-ranking of only the top 15
results) and without pre-processing does not yield satisfactory results.

• GPL is a good domain adaptation method, considering it is completely unsupervised
and achieves results similar to some of the top performing pre-trained semantic
search models.

• Augmented SBERT applied for semantic search requires many queries when trained
with the Cosine Similarity Loss.

• Pre-trained semantic search sentence transformers appear to be the best approach
to retrieve relevant passages on legal documents.

5.2 Drawbacks and Limitations
The main shortcomings of this study are that we’ve been unable to fine-tune better

performing models than the pre-trained ones. This could be explained by the fact that
the pre-trained models already work very well and the margin for improvement could be
none-existent without any annotations. Regarding annotations, the labels we’ve gathered
have both been used for evaluation purposes as well as fine-tuning with Augmented
SBERT. About the former objective we’ve reported many information retrieval evaluation
metrics and successfully compared the performance of our approaches using the suggested
minimum of 50 queries (see section 3.2.2.1). We only evaluate the most relevant passages
retrieved which still have been collected among all possible passages and can reasonably
be used to compare different models.

As for the supervised fine-tuning objective, there is little to no documentation on the
application of Augmented SBERT in a semantic search setting. On top of the apparent
need for more queries, as suggested in section 4.3.4, the publication [33] also suggests that
the silver dataset should match the distribution of our corpus, which is not necessarily our
case, as it has only been constructed using the most relevant passages for multiple queries.
While the augmentation most likely leads to highly irrelevant pairs, it fails to include
other types of passages that have not been retrieved in the first place. Moreover, we’ve
seen that judging a relevancy between 0 and 5 is a highly subjective task. Annotating
triplets instead (is the first pair better than the second) might have been an easier task
for our raters and might have improved the fine-tuning with a slightly different approach
(using the MarginMSE or the MNR Loss for example - see section 2.4.3). Since the
original Augmented SBERT used the Cosine Similarity Loss on a sentence pair regression

43

task, and since we also needed to use these labels for evaluation, we did not use triplet
annotations.

5.3 Future work
Resulting from this project, we have obtained a large corpus of labeled query-passage

pairs, which can be used for a variety of experiments. The entire dataset can be fine-
tuned with supervised learning, but it should be evaluated on a new set of queries. As
discussed in section 5.2, experimenting with different loss functions that are better suited
for semantic search is another option. For example, if we use annotated triplets instead
of pairs, we could apply the Augmented SBERT approach using the MarginMSE loss.
This would resemble the GPL approach with an added step of manual validation of the
generated query-answer pairs, which we believe to be a promising direction.

To expand the scope of our comparative study, different approaches based on late-
interaction, lexical, sparse, or dense retrieval can be included. An in-depth analysis could
also assess how complementary the pre-trained models are by examining the overlap
between the retrieved passages of each model. Additionally, a multilingual IR study could
be conducted by leveraging the numerous available translations of the initial documents
and the annotations for the English ones. Further research ideas also include verifying
whether our results align with a comparative study in a semantic similarity or clustering
setting.

To conclude, it is worth noting that the AI powered chatbot ChatGPT19 was unveiled
to the public during this project, generating a lot of buzz due to its impressive language
processing capabilities. Our approach remains relevant in chat settings since generative
models fail to provide the source of their data, and efficient and scalable retrieval remains
an important initial stage to finding the sources on which to generate answers. Our
methodology can serve as a robust baseline for future research in this field. With the
power of pre-trained models and the potential for fine-tuning, the possibilities for further
experimentation are vast.

19chat.openai.com

44

chat.openai.com
chat.openai.com

References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

[2] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” in EMNLP/IJCNLP (1) (K. Inui, J. Jiang, V. Ng, and X. Wan,
eds.), pp. 3980–3990, Association for Computational Linguistics, 2019.

[3] K. Wang, N. Thakur, N. Reimers, and I. Gurevych, “GPL: Generative pseudo
labeling for unsupervised domain adaptation of dense retrieval,” in Proceedings of the
2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, (Seattle, United States), pp. 2345–2360,
Association for Computational Linguistics, July 2022.

[4] N. Thakur, N. Reimers, A. Ruckl’e, A. Srivastava, and I. Gurevych, “Beir: A
heterogenous benchmark for zero-shot evaluation of information retrieval models,”
ArXiv, vol. abs/2104.08663, 2021.

[5] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: BM25 and
beyond,” Foundations and Trends® in Information Retrieval, vol. 3, no. 4, pp. 333–
389, 2009.

[6] R. Nogueira, W. Yang, J. Lin, and K. Cho, “Document expansion by query
prediction.,” CoRR, vol. abs/1904.08375, 2019.

[7] Z. Dai and J. Callan, “Context-aware sentence/passage term importance estimation
for first stage retrieval.,” CoRR, vol. abs/1910.10687, 2019.

[8] O. Khattab and M. Zaharia, “Colbert: Efficient and effective passage search via
contextualized late interaction over bert,” in Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’20, (New York, NY, USA), p. 39–48, Association for Computing Machinery,
2020.

[9] M. Li and J. J. Lin, “Encoder adaptation of dense passage retrieval for open-domain
question answering,” ArXiv, vol. abs/2110.01599, 2021.

[10] S. Hofstätter, S.-C. Lin, J.-H. Yang, J. Lin, and A. Hanbury, “Efficiently teaching
an effective dense retriever with balanced topic aware sampling,” in Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’21, (New York, NY, USA), p. 113–122, Association
for Computing Machinery, 2021.

[11] J. Ma, I. Korotkov, Y. Yang, K. Hall, and R. McDonald, “Zero-shot neural passage
retrieval via domain-targeted synthetic question generation,” in Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, (Online), pp. 1075–1088, Association for Computational
Linguistics, Apr. 2021.

45

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
(Minneapolis, Minnesota), pp. 4171–4186, Association for Computational Linguistics,
June 2019.

[13] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[14] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[16] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder–decoder for
statistical machine translation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), (Doha, Qatar), pp. 1724–1734,
Association for Computational Linguistics, Oct. 2014.

[17] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining
approach,” 2019.

[18] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-training text
encoders as discriminators rather than generators,” in International Conference on
Learning Representations, 2020.

[19] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: Masked and permuted
pre-training for language understanding,” in Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS’20, (Red Hook, NY,
USA), Curran Associates Inc., 2020.

[20] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” NIPS’20, (Red Hook, NY, USA), Curran Associates Inc., 2020.

[21] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[22] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers,” in
Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, (Red Hook, NY, USA), Curran Associates Inc., 2020.

46

[23] N. T.-H. Nguyen, P. P.-D. Ha, L. T. Nguyen, K. Van Nguyen, and N. L.-T.
Nguyen, “Spbertqa: A two-stage question answering system based onnbsp;sentence
transformers fornbsp;medical texts,” in Knowledge Science, Engineering and
Management: 15th International Conference, KSEM 2022, Singapore, August 6–8,
2022, Proceedings, Part II, (Berlin, Heidelberg), p. 371–382, Springer-Verlag, 2022.

[24] M. Grootendorst, “Bertopic: Neural topic modeling with a class-based tf-idf
procedure,” 2022.

[25] S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston, “Poly-encoders: Transformer
architectures and pre-training strategies for fast and accurate multi-sentence scoring,”
2019.

[26] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation.,” in EMNLP, vol. 14, pp. 1532–1543, 2014.

[27] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus
for learning natural language inference,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, (Lisbon, Portugal), pp. 632–642,
Association for Computational Linguistics, Sept. 2015.

[28] D. M. Cer, M. T. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “Semeval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation.,” in
SemEval@ACL (S. Bethard, M. Carpuat, M. Apidianaki, S. M. Mohammad, D. M.
Cer, and D. Jurgens, eds.), pp. 1–14, Association for Computational Linguistics,
2017.

[29] M. L. Henderson, R. Al-Rfou, B. Strope, Y.-H. Sung, L. Lukács, R. Guo, S. Kumar,
B. Miklos, and R. Kurzweil, “Efficient natural language response suggestion for smart
reply.,” CoRR, vol. abs/1705.00652, 2017.

[30] S. Hofstätter, S. Althammer, M. Schröder, M. Sertkan, and A. Hanbury, “Improving
efficient neural ranking models with cross-architecture knowledge distillation.,”
CoRR, vol. abs/2010.02666, 2020.

[31] K. Wang, N. Reimers, and I. Gurevych, “TSDAE: Using transformer-based sequential
denoising auto-encoderfor unsupervised sentence embedding learning,” in Findings
of the Association for Computational Linguistics: EMNLP 2021, (Punta Cana,
Dominican Republic), pp. 671–688, Association for Computational Linguistics, Nov.
2021.

[32] C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” ArXiv, vol. abs/1910.10683, 2019.

[33] N. Thakur, N. Reimers, J. Daxenberger, and I. Gurevych, “Augmented SBERT:
Data augmentation method for improving bi-encoders for pairwise sentence scoring
tasks,” in Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, (Online),
pp. 296–310, Association for Computational Linguistics, June 2021.

47

[34] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval.
Cambridge University Press, 2008.

[35] A. Trotman, A. Puurula, and B. Burgess, “Improvements to bm25 and language
models examined,” in Proceedings of the 2014 Australasian Document Computing
Symposium, ADCS ’14, (New York, NY, USA), p. 58–65, Association for Computing
Machinery, 2014.

[36] P. Yang, H. Fang, and J. Lin, “Anserini: Enabling the use of lucene for information
retrieval research,” in Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’17, (New York, NY,
USA), p. 1253–1256, Association for Computing Machinery, 2017.

[37] K. Santhanam, O. Khattab, J. Saad-Falcon, C. Potts, and M. Zaharia, “ColBERTv2:
Effective and efficient retrieval via lightweight late interaction,” in Proceedings of the
2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, (Seattle, United States), pp. 3715–3734,
Association for Computational Linguistics, July 2022.

[38] N. Reimers, (Twitter) ”GPT-3 embeddings by @openai was announced this week. I
was excited and tested them on 20 datasets. sadly they are worse than open models
that are 1000 x smaller. running @OpenAI models can be a 1 million times more
expensive”. Jan 2022.

[39] C. D. Manning, P. Raghavan, and S. Hinrich, Evaluation in information retrieval.
Cambridge University Press, 2019.

[40] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and
projection for dimension reduction,” 2018.

[41] C. Malzer and M. Baum, “A hybrid approach to hierarchical density-based cluster
selection,” 2020.

[42] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng,
“Ms marco: A human generated machine reading comprehension dataset.,” CoRR,
vol. abs/1611.09268, 2016.

[43] M. Honnibal and M. Johnson, “An improved non-monotonic transition system for
dependency parsing,” in Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, (Lisbon, Portugal), pp. 1373–1378, Association for
Computational Linguistics, Sept. 2015.

[44] J. Nivre and J. Nilsson, “Pseudo-projective dependency parsing.,” in ACL (K. Knight,
H. T. Ng, and K. Oflazer, eds.), pp. 99–106, The Association for Computer
Linguistics, 2005.

[45] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing.” 2017.

[46] S. Wu and S. I. McClean, “Information retrieval evaluation with partial relevance
judgment.,” in BNCOD (D. A. Bell and J. Hong, eds.), vol. 4042 of Lecture Notes in
Computer Science, pp. 86–93, Springer, 2006.

48

[47] S. Teufel, “An overview of evaluation methods in trec ad hoc information retrieval
and trec question answering,” in Evaluation of Text and Speech Systems, p. 163–186,
Springer, 2007.

[48] C. Buckley and E. M. Voorhees, “Evaluating evaluation measure stability,” in
Proceedings of the 23rd annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’00, (New York, NY, USA), pp. 33–40,
ACM, 2000.

49

Appendix

A Queries

What are the duties of eu reference laboratories?
What does the enterprise europe network do?
What kind of securities are eligible for eu guarantee?
Which decision clarifies the provision of a network code?
What are underlying exposures?
What is EUROSUR?
When did the european border surveillance system begin?
What are the general conditions for reusing data?
Freedoms provided by the eea agreement?
What are strategic investments?
What is the esf+?
How do esf+ contribute to gender equality?
What is a dwelling?
What does anonymous mean in the context of data?
How is personal data reused?
Can biodiesel be exported?
Do credit purchasers need a license?
Do members of the eu need to develop a plan for security?
Does the eu issue its own certificate of authenticity?
How are company incomes calculated?
How does the European Union measure market value?
How long is an identifying document to be kept?
How long will eu retain a customer’s personal data?
How much can be caught with a fishing authorisation?
How to change the fishing authorisation?
Regulated medicines definition
What are the basic safety requirements for stationary bicycles?
What are the macroeconomic indicators?
What are the main requirements of the energy security directive?
What are the principles for reusing data?
What does an accredited verifier do?
What does een mean?
What does european security mean?
What does self employment mean?
What investments are covered under the eu guarantee?
What is a classified production area?
What is a commercial invoice?
What is a proximate chain of events?
What is a reference laboratory?
Which eu institution is involved in clearing accounts?
Elisa test definition
Eurojust definition
What are investment guidelines?
What is the csd in a financial statement?
What is the maximum spectrum level allowed for rlan?
What is the purpose of an anti-dumping investigation?
What is the purpose of the oppf tax?
What method is used to test tomatoes?
Which state is involved in switzerland’s compliance protocol?
What type of inspection do you require for a sanitary survey?
What do u need to do for biodiversity?

Table 6: (Q2)

50

What are the requirements for a livestock license?
When do railway licences expire?
What is a low capacity slaughterhouse?
What are liquidity requirements for investment firms?
What date does the european monopoly act start?
What is an ecolabel?
What is considered a reasonable profit?
How do syndicated loans work?
What does the european agreement on scientific cooperation include?
What are the requirements for a crowdfunding service provider?
What is a life cycle assessment?
What does selective distribution mean?
How long can an eu blue card be used?
What is cypermethrin used for?
What is the name of the italian company from the european union that collects
protected designations of origin and protected geographical indications?
EU regulation to protect personal data
What is the definition of an appeal?
Define covered bonds
How to transfer personal data internationally?
What is a free trade zone?
What is a vms?
What measures should hosting service providers take to prevent terrorism?
What is the purpose of data collection?
What was the purpose of the conference on chemical weapons?
Who is responsible for calculating the emissions of a car?
What is the definition of a carbon leakage?
Types of petroleum products
What is covid-19?
What is eu-LISA?
What is the e-codex?
What causes the decrease in natural gas prices?
Recommended daily dose for milking?
What is a public key infrastructure?
What is considered a sampling scheme?
What is the method for testing genetically modified food?
Who can propose amendments to rules of procedure?
How often should carbon emissions be measured?
What is the necessary step of the process to protect designation of origin?
What is the cn code for maize?
What is a zero emissions vehicle?
What is a hedging instrument?
What is an information system?
How can antidumping duties be effective?
What type of goods do EU imports include?
When is an item of information considered confidential?
Who is mayor of cugir city?
Where is rum manufactured?
What is an environmental performance indicator for public administration?
What regulation is applicable for metadata?

Table 7: (Q3)

51

B BERTopic

Figure 21: First 32 Topic c-TF-iDF Representations for the EUR-Lex data. These are the
32 topics containing most sentences and obtained with BERTopic’s default parameters for
embeddings selection, UMAP, HDBSCAN.

52

C Inter-Annotator Agreement
The data introduced in section 4.1 is presented again in Figure 22, this time in heatmap

form. The cell with most annotations corresponds to a score of 3 given by annotator A
considered as a score of 4 by annotator B. This shift is not unidirectional though, as we
can see many pairs annotated as 5 by annotator A have also been considered as 4 by
annotator B. While such differences are acceptable, answers with strong disagreements
require further inspection. Most often, pairs with disagreements are not easy to annotate
at first sight and have either been annotated too quickly by one annotator or have been
annotated with some external knowledge. An example of extreme disagreement is shown
in Figure 23.

Figure 22: Relevancy Heatmap: Annotator A vs. Annotator B. Using the data from
section 4.1.

53

Figure 23: Example of a query-passage pair where one rater considered maximum
relevancy 5 and the other rater considered relevancy score 0. At first glance it seems
like a perfect answer but the context combined with some external knowledge indicates
the quantities refer to milk certification protocols rather than a recommended daily dose.

If we isolate the query-passage pairs that have been removed from our results and
plot the number of strong disagreements versus the length of their associated queries (see
Figure 24), we see a moderate correlation. The correlation coefficient is in fact 0.45. As
suggested in section 3.2.2.2, longer queries lead to results that are more difficult to retrieve
and evaluate, which is partially verified here.

Figure 24: Kernel Density Estimate: Number of Query Terms vs. Number of Strong
Disagreements. Using the data from section 4.1 where we’ve kept only the pairs with
strong disagreements (relevancy score difference ≥ 3).

54

	Contents
	Introduction
	Motivations
	Objectives
	Outline
	Term clarification

	Background
	Information Retrieval
	Semantic Search
	Transformers
	Attention Mechanism
	Self-Attention
	Attention weights
	Pre-Training and Fine-Tuning
	Model Variants

	Transformers for Semantic Search
	Early Approaches
	Bi-Encoders
	Loss Functions
	Cross-Encoder Re-ranking
	Domain Adaptation

	Lexical Search
	Early Approaches
	BM25 Okapi

	Other Approaches

	Methodology
	Objectives and Tasks
	Dataset Creation
	Legal Corpus
	Query Selection
	Fine-Tuning & Evaluation Requirements
	Retrieval Span and Context

	IR Evaluation Metrics
	nDCG@K
	mAP@k
	MRR
	mAR@k

	Rater Agreement Metrics
	Spearman's rho
	Kendall's tau

	Annotation Campaign
	Guidelines
	Annotation Files
	Three Tier Approach
	Resulting Data

	Results
	Inter-Annotator Agreement
	Domain Adaptation
	GPL
	AugSBERT

	Comparative Analysis
	Cross-Encoder Re-Ranking
	Sensitivity to k
	Binary Relevancy Results
	Discussion

	Conclusion and Perspectives
	Key takeaways
	Drawbacks and Limitations
	Future work

	References
	Queries
	BERTopic
	Inter-Annotator Agreement

